Parabolic super mean value inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subdifferential Rolle’s and Mean Value Inequality Theorems

In this note we give a subdifferential mean value inequality for every continuous Gâteaux subdifferentiable function f in a Banach space which only requires a bound for one but not necessarily all of the subgradients of f at every point of its domain. We also give a subdifferential approximate Rolle’s theorem stating that if a subdifferentiable function oscillates between −ε and ε on the bounda...

متن کامل

An Inequality of Ostrowski Type via Pompeiu’s Mean Value Theorem

 (b− a)M, for all x ∈ [a, b] . The constant 14 is best possible in the sense that it cannot be replaced by a smaller constant. In [2], the author has proved the following Ostrowski type inequality. Theorem 2. Let f : [a, b] → R be continuous on [a, b] with a > 0 and differentiable on (a, b) . Let p ∈ R\ {0} and assume that Kp (f ) := sup u∈(a,b) { u |f ′ (u)| } < ∞. Then we have the inequality...

متن کامل

A Generalized Mean Value Inequality for Subharmonic Functions and Applications

If u ≥ 0 is subharmonic on a domain Ω in Rn and p > 0, then it is well-known that there is a constant C(n, p) ≥ 1 such that u(x)p ≤C(n, p)M V (up,B(x,r)) for each ball B(x,r) ⊂ Ω. We recently showed that a similar result holds more generally for functions of the form ψ◦ u where ψ : R+ → R+ may be any surjective, concave function whose inverse ψ−1 satisfies the ∆2-condition. Now we point out tha...

متن کامل

MEAN VALUE INTERPOLATION ON SPHERES

In this paper we consider   multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have   concentric spheres. Indeed, we consider the problem in three variables when it is not correct.  

متن کامل

On Super mean graphs

Let G be a (p, q) graph and let f : V (G) → {1, 2, 3, · · · , p + q} be an injection. For each edge e = uv, let f∗(e) = (f(u)+f(v))/2 if f(u)+f(v) is even and f∗(e) = (f(u)+f(v)+1)/2 if f(u) + f(v) is odd. Then f is called a super mean labeling if f(V ) ∪ {f∗(e) : e ∈ E(G)} = {1, 2, 3, · · · , p+ q}. A graph that admits a super mean labeling is called a super mean graph. In this paper we presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2002

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-02-06457-2